The effect of viscous relaxation on the spatiotemporal stability of capillary jets

Author:

Sevilla Alejandro

Abstract

AbstractThe linear spatiotemporal stability properties of axisymmetric laminar capillary jets with fully developed initial velocity profiles are studied for large values of both the Reynolds number, $\mathit{Re}= Q/ (\lrm{\pi} a\nu )$, and the Froude number, $\mathit{Fr}= {Q}^{2} / ({\lrm{\pi} }^{2} g{a}^{5} )$, where $a$ is the injector radius, $Q$ the volume flow rate, $\nu $ the kinematic viscosity and $g$ the gravitational acceleration. The downstream development of the basic flow and its stability are addressed with an approximate formulation that takes advantage of the jet slenderness. The base flow is seen to depend on two parameters, namely a Stokes number, $G= \mathit{Re}/ \mathit{Fr}$, and a Weber number, $\mathit{We}= \rho {Q}^{2} / ({\lrm{\pi} }^{2} \sigma {a}^{3} )$, where $\sigma $ is the surface tension coefficient, while its linear stability depends also on the Reynolds number. When non-parallel terms are retained in the local stability problem, the analysis predicts a critical value of the Weber number, ${\mathit{We}}_{c} (G, \mathit{Re})$, below which a pocket of local absolute instability exists within the near field of the jet. The function ${\mathit{We}}_{c} (\mathit{Re})$ is computed for the buoyancy-free jet, showing marked differences with the results previously obtained with uniform velocity profiles. It is seen that, in accounting for gravity effects, it is more convenient to express the parametric dependence of the critical Weber number with use made of the Morton and Bond numbers, $\mathit{Mo}= {\nu }^{4} {\rho }^{3} g/ {\sigma }^{3} $ and $\mathit{Bo}= \rho g{a}^{2} / \sigma $, as replacements for $G$ and $\mathit{Re}$. This alternative formulation is advantageous to describe jets of a given liquid for a known value of $g$, in that the resulting Morton number becomes constant, thereby leaving $\mathit{Bo}$ as the only relevant parameter. The computed function ${\mathit{We}}_{c} (\mathit{Bo})$ for a water jet under Earth gravity is shown to be consistent with the experimental results of Clanet and Lasheras for the transition from jetting to dripping of water jets discharging into air from long injection needles, which cannot be properly described with a uniform velocity profile assumed at the jet exit.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference50 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3