Low Rossby limiting dynamics for stably stratified flow with finite Froude number

Author:

WINGATE BETH A.,EMBID PEDRO,HOLMES-CERFON MIRANDA,TAYLOR MARK A.

Abstract

In this paper, we explore the strong rotation limit of the rotating and stratified Boussinesq equations with periodic boundary conditions when the stratification is order 1 ([Rossby number] Ro = ε, [Froude number] Fr = O(1), as ε → 0). Using the same framework of Embid & Majda (Geophys. Astrophys. Fluid Dyn., vol. 87, 1998, p. 1), we show that the slow dynamics decouples from the fast. Furthermore, we derive equations for the slow dynamics and their conservation laws. The horizontal momentum equations reduce to the two-dimensional Navier–Stokes equations. The equation for the vertically averaged vertical velocity includes a term due to the vertical average of the buoyancy. The buoyancy equation, the only variable to retain its three-dimensionality, is advected by all three two-dimensional slow velocity components. The conservation laws for the slow dynamics include those for the two-dimensional Navier–Stokes equations and a new conserved quantity that describes dynamics between the vertical kinetic energy and the buoyancy. The leading order potential enstrophy is slow while the leading order total energy retains both fast and slow dynamics. We also perform forced numerical simulations of the rotating Boussinesq equations to demonstrate support for three aspects of the theory in the limit Ro → 0: (i) we find the formation and persistence of large-scale columnar Taylor–Proudman flows in the presence of O(1) Froude number; after a spin-up time, (ii) the ratio of the slow total energy to the total energy approaches a constant and that at the smallest Rossby numbers that constant approaches 1 and (iii) the ratio of the slow potential enstrophy to the total potential enstrophy also approaches a constant and that at the lowest Rossby numbers that constant is 1. The results of the numerical simulations indicate that even in the presence of the low wavenumber white noise forcing the dynamics exhibit characteristics of the theory.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The QG limit of magnetohydrodynamic rotating shallow water system;Journal of Mathematical Physics;2024-06-01

2. Multiple-scale asymptotic limit for rotating shallow water equations;SCIENTIA SINICA Mathematica;2023-11-01

3. Evolution of a Stratified Turbulent Cloud under Rotation;Atmosphere;2023-10-22

4. Reduction methods in climate dynamics—A brief review;Physica D: Nonlinear Phenomena;2023-06

5. Higher Order Phase Averaging for Highly Oscillatory Systems;Multiscale Modeling & Simulation;2022-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3