Rational points on nonlinear horocycles and pigeonhole statistics for the fractional parts of

Author:

PATTISON SAM

Abstract

AbstractIn this paper, we investigatepigeonhole statisticsfor the fractional parts of the sequence$\sqrt {n}$. Namely, we partition the unit circle$ \mathbb {T} = \mathbb {R}/\mathbb {Z}$intoNintervals and show that the proportion of intervals containing exactlyjpoints of the sequence$(\sqrt {n} + \mathbb {Z})_{n=1}^N$converges in the limit as$N \to \infty $. More generally, we investigate how the limiting distribution of the first$sN$points of the sequence varies with the parameter$s \geq 0$. A natural way to examine this is via point processes—random measures on$[0,\infty )$which represent the arrival times of the points of our sequence to a random interval from our partition. We show that the sequence of point processes we obtain converges in distribution and give an explicit description of the limiting process in terms of random affine unimodular lattices. Our work uses ergodic theory in the space of affine unimodular lattices, building upon work of Elkies and McMullen [Gaps in$\sqrt {n}$mod 1 and ergodic theory.Duke Math. J.123(2004), 95–139]. We prove a generalisation of equidistribution of rational points on expanding horocycles in the modular surface, working instead on nonlinear horocycle sections.

Funder

Heilbronn Institute for Mathematical Research

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smallest denominators;Bulletin of the London Mathematical Society;2024-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3