Typical properties of periodic Teichmüller geodesics: Lyapunov exponents
-
Published:2021-11-17
Issue:
Volume:
Page:1-29
-
ISSN:0143-3857
-
Container-title:Ergodic Theory and Dynamical Systems
-
language:en
-
Short-container-title:Ergod. Th. Dynam. Sys.
Author:
HAMENSTÄDT URSULA
Abstract
Abstract
Consider a component
${\cal Q}$
of a stratum in the moduli space of area-one abelian differentials on a surface of genus g. Call a property
${\cal P}$
for periodic orbits of the Teichmüller flow on
${\cal Q}$
typical if the growth rate of orbits with property
${\cal P}$
is maximal. We show that the following property is typical. Given a continuous integrable cocycle over the Teichmüller flow with values in a vector bundle
$V\to {\cal Q}$
, the logarithms of the eigenvalues of the matrix defined by the cocycle and the orbit are arbitrarily close to the Lyapunov exponents of the cocycle for the Masur–Veech measure.
Funder
H2020 European Research Council
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Periodic orbits in the thin part of strata;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-02-20