Abstract
AbstractLet $(G,\unicode[STIX]{x1D6EC})$ be a self-similar $k$-graph with a possibly infinite vertex set $\unicode[STIX]{x1D6EC}^{0}$. We associate a universal C*-algebra ${\mathcal{O}}_{G,\unicode[STIX]{x1D6EC}}$ to $(G,\unicode[STIX]{x1D6EC})$. The main purpose of this paper is to investigate the ideal structures of ${\mathcal{O}}_{G,\unicode[STIX]{x1D6EC}}$. We prove that there exists a one-to-one correspondence between the set of all $G$-hereditary and $G$-saturated subsets of $\unicode[STIX]{x1D6EC}^{0}$ and the set of all gauge-invariant and diagonal-invariant ideals of ${\mathcal{O}}_{G,\unicode[STIX]{x1D6EC}}$. Under some conditions, we characterize all primitive ideals of ${\mathcal{O}}_{G,\unicode[STIX]{x1D6EC}}$. Moreover, we describe the Jacobson topology of some concrete examples, which includes the C*-algebra of the product of odometers. On the way to our main results, we study self-similar $P$-graph C*-algebras in depth.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Wold decomposition and C*-envelopes of self-similar semigroup actions on graphs;Journal of Mathematical Analysis and Applications;2024-09
2. Exel-Pardo Algebras of Self-Similar k-Graphs;Bulletin of the Malaysian Mathematical Sciences Society;2023-02-28