Hausdorff and packing dimensions and measures for nonlinear transversally non-conformal thin solenoids

Author:

MOHAMMADPOUR REZAORCID,PRZYTYCKI FELIKSORCID,RAMS MICHAŁORCID

Abstract

Abstract We extend the results of Hasselblatt and Schmeling [Dimension product structure of hyperbolic sets. Modern Dynamical Systems and Applications. Eds. B. Hasselblatt, M. Brin and Y. Pesin. Cambridge University Press, New York, 2004, pp. 331–345] and of Rams and Simon [Hausdorff and packing measure for solenoids. Ergod. Th. & Dynam. Sys.23 (2003), 273–292] for $C^{1+\varepsilon }$ hyperbolic, (partially) linear solenoids $\Lambda $ over the circle embedded in $\mathbb {R}^3$ non-conformally attracting in the stable discs $W^s$ direction, to nonlinear solenoids. Under the assumptions of transversality and on the Lyapunov exponents for an appropriate Gibbs measure imposing thinness, as well as the assumption that there is an invariant $C^{1+\varepsilon }$ strong stable foliation, we prove that Hausdorff dimension $\operatorname {\mathrm {HD}}(\Lambda \cap W^s)$ is the same quantity $t_0$ for all $W^s$ and else $\mathrm {HD}(\Lambda )=t_0+1$ . We prove also that for the packing measure, $0<\Pi _{t_0}(\Lambda \cap W^s)<\infty $ , but for Hausdorff measure, $\mathrm {HM}_{t_0}(\Lambda \cap W^s)=0$ for all $W^s$ . Also $0<\Pi _{1+t_0}(\Lambda ) <\infty $ and $\mathrm {HM}_{1+t_0}(\Lambda )=0$ . A technical part says that the holonomy along unstable foliation is locally Lipschitz, except for a set of unstable leaves whose intersection with every $W^s$ has measure $\mathrm {HM}_{t_0}$ equal to 0 and even Hausdorff dimension less than $t_0$ . The latter holds due to a large deviations phenomenon.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. Conformal Fractals

2. Measures of Maximal Dimension for Linear Horseshoes

3. Hausdorff and packing measure for solenoids

4. [5] Brown, A. . Smoothness of stable holonomies inside center-stable manifolds and the ${C}^2$ hypothesis in Pugh–Shub and Ledrappier–Young theory. Preprint, 2016, arXiv:1608.05886.

5. Thermodynamic formalism, large deviation, and multifractals

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regularity of the Hausdorff dimension of some hyperbolic systems;Journal of Mathematical Analysis and Applications;2024-11

2. A Dichotomy for the Dimension of Solenoidal Attractors on High Dimensional Space;Communications in Mathematical Physics;2024-05

3. A dichotomy for the dimension of SRB measure;Advances in Mathematics;2024-04

4. Dimension of a Class of Intrinsically Transversal Solenoidal Attractors in High Dimensions;Qualitative Theory of Dynamical Systems;2022-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3