Return-time -spectrum for equilibrium states with potentials of summable variation

Author:

ABADI M.,AMORIM V.,CHAZOTTES J.-R.ORCID,GALLO S.

Abstract

Abstract Let $(X_k)_{k\geq 0}$ be a stationary and ergodic process with joint distribution $\mu $ , where the random variables $X_k$ take values in a finite set $\mathcal {A}$ . Let $R_n$ be the first time this process repeats its first n symbols of output. It is well known that $({1}/{n})\log R_n$ converges almost surely to the entropy of the process. Refined properties of $R_n$ (large deviations, multifractality, etc) are encoded in the return-time $L^q$ -spectrum defined as provided the limit exists. We consider the case where $(X_k)_{k\geq 0}$ is distributed according to the equilibrium state of a potential with summable variation, and we prove that where $P((1-q)\varphi )$ is the topological pressure of $(1-q)\varphi $ , the supremum is taken over all shift-invariant measures, and $q_\varphi ^*$ is the unique solution of $P((1-q)\varphi ) =\sup _\eta \int \varphi \,d\eta $ . Unexpectedly, this spectrum does not coincide with the $L^q$ -spectrum of $\mu _\varphi $ , which is $P((1-q)\varphi )$ , and it does not coincide with the waiting-time $L^q$ -spectrum in general. In fact, the return-time $L^q$ -spectrum coincides with the waiting-time $L^q$ -spectrum if and only if the equilibrium state of $\varphi $ is the measure of maximal entropy. As a by-product, we also improve the large deviation asymptotics of $({1}/{n})\log R_n$ .

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Deviations of Return Times and Related Entropy Estimators on Shift Spaces;Communications in Mathematical Physics;2024-05-22

2. Number of visits in arbitrary sets for ϕ-mixing dynamics;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3