Abstract
AbstractThe purpose of this article is to study the relation between combinatorial equivalence and topological conjugacy, specifically how a certain type of combinatorial equivalence implies topological conjugacy. We introduce the concept of kneading sequences for a setting that is more general than one-dimensional dynamics: for the two-dimensional toy model family of Hénon maps introduced by Benedicks and Carleson, we define kneading sequences for their critical lines, and prove that these sequences are a complete invariant for a natural conjugacy class among the toy model family. We also establish a version of Singer’s theorem for the toy model family.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献