Abstract
AbstractThe f-invariant is an isomorphism invariant of free-group measure-preserving actions introduced by Lewis Bowen, who first used it to show that two finite-entropy Bernoulli shifts over a finitely generated free group can be isomorphic only if their base measures have the same Shannon entropy. Bowen also showed that the f-invariant is a variant of sofic entropy; in particular, it is the exponential growth rate of the expected number of good models over a uniform random homomorphism. In this paper we present an analogous formula for the relative f-invariant and use it to prove a formula for the exponential growth rate of the expected number of good models over a random sofic approximation which is a type of stochastic block model.
Funder
Division of Mathematical Sciences
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献