Minimal and proximal examples of -stable and -approachable shift spaces

Author:

CAN MELIH EMIN,KONIECZNY JAKUBORCID,KUPSA MICHAL,KWIETNIAK DOMINIKORCID

Abstract

Abstract We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s $\bar {d}$ metric ( $\bar {d}$ -approachable shift spaces). The class of $\bar {d}$ -approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of $\bar {d}$ -approachability, together with a closely connected notion of $\bar {d}$ -shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys.43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure $\bar {d}$ -approachability and $\bar {d}$ -shadowing. Here, we study further properties and connections between $\bar {d}$ -shadowing and $\bar {d}$ -approachability. We prove that $\bar {d}$ -shadowing implies $\bar {d}$ -stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the $\bar {d}$ -shadowing property the Hausdorff pseudodistance ${\bar d}^{\mathrm {H}}$ between shift spaces induced by $\bar {d}$ is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric $\bar {d}$ between measures. We prove that without $\bar {d}$ -shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the $\bar {d}$ -shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that $\bar {d}$ -shadowing indeed generalizes the specification property.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Narodowe Centrum Nauki

Agence Nationale de la Recherche

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3