Abstract
In this paper we analyse the non-wandering set of one-dimensional Greenberg–Hastings cellular automaton models for excitable media with $e\geqslant 1$ excited and $r\geqslant 1$ refractory states and determine its (strictly positive) topological entropy. We show that it results from a Devaney chaotic closed invariant subset of the non-wandering set that consists of colliding and annihilating travelling waves, which is conjugate to a skew-product dynamical system of coupled shift dynamics. Moreover, we determine the remaining part of the non-wandering set explicitly as a Markov system with strictly less topological entropy that also scales differently for large $e,r$.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献