Author:
BÉNARD TIMOTHÉE,VARJÚ PÉTER P.
Abstract
Abstract
Let
$l\in \mathbb {N}_{\ge 1}$
and
$\alpha : \mathbb {Z}^l\rightarrow \text {Aut}(\mathscr {N})$
be an action of
$\mathbb {Z}^l$
by automorphisms on a compact nilmanifold
$\mathscr{N}$
. We assume the action of every
$\alpha (z)$
is ergodic for
$z\in \mathbb {Z}^l\smallsetminus \{0\}$
and show that
$\alpha $
satisfies exponential n-mixing for any integer
$n\geq 2$
. This extends the results of Gorodnik and Spatzier [Mixing properties of commuting nilmanifold automorphisms. Acta Math.215 (2015), 127–159].
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics