Abstract
We consider dynamical systems $T:X\rightarrow X$ that are extensions of a factor $S:Y\rightarrow Y$ through a projection $\unicode[STIX]{x1D70B}:X\rightarrow Y$ with shrinking fibers, that is, such that $T$ is uniformly continuous along fibers $\unicode[STIX]{x1D70B}^{-1}(y)$ and the diameter of iterate images of fibers $T^{n}(\unicode[STIX]{x1D70B}^{-1}(y))$ uniformly go to zero as $n\rightarrow \infty$. We prove that every $S$-invariant measure $\check{\unicode[STIX]{x1D707}}$ has a unique $T$-invariant lift $\unicode[STIX]{x1D707}$, and prove that many properties of $\check{\unicode[STIX]{x1D707}}$ lift to $\unicode[STIX]{x1D707}$: ergodicity, weak and strong mixing, decay of correlations and statistical properties (possibly with weakening in the rates). The basic tool is a variation of the Wasserstein distance, obtained by constraining the optimal transportation paradigm to displacements along the fibers. We extend classical arguments to a general setting, enabling us to translate potentials and observables back and forth between $X$ and $Y$.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference45 articles.
1. [Alv15] Alves, J. F. . SRB measures for partially hyperbolic attractors, 2015, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.709.4072&rep=rep1&type=pdf.
2. SRB measures for partially hyperbolic systems whose central direction is mostly expanding
3. Differentiable dynamical systems
4. On the fundamental ideas of measure theory;Rohlin;Amer. Math. Soc. Trans.,1952
5. Singular-hyperbolic attractors are chaotic
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献