Abstract
Abstract
We extend the concept of a Hubbard tree, well established and useful in the theory of polynomial dynamics, to the dynamics of transcendental entire functions. We show that Hubbard trees in the strict traditional sense, as invariant compact trees embedded in
$\mathbb {C}$
, do not exist even for post-singularly finite exponential maps; the difficulty lies in the existence of asymptotic values. We therefore introduce the concept of a homotopy Hubbard tree that takes care of these difficulties. Specifically for the family of exponential maps, we show that every post-singularly finite map has a homotopy Hubbard tree that is unique up to homotopy, and that post-singularly finite exponential maps can be classified in terms of homotopy Hubbard trees, using a transcendental analogue of Thurston’s topological characterization theorem of rational maps.
Funder
H2020 European Research Council
Deutsche Forschungsgemeinschaft
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics