Author:
ASADI-VASFI M. ALI,GOLESTANI NASSER,PHILLIPS N. CHRISTOPHER
Abstract
AbstractLet G be a finite group, let A be an infinite-dimensional stably finite simple unital C*-algebra, and let
$\alpha \colon G \to {\operatorname {Aut}} (A)$
be an action of G on A which has the weak tracial Rokhlin property. Let
$A^{\alpha }$
be the fixed point algebra. Then the radius of comparison satisfies
${\operatorname {rc}} (A^{\alpha }) \leq {\operatorname {rc}} (A)$
and
${\operatorname {rc}} ( C^* (G, A, \alpha ) ) \leq ({1}/{{{\operatorname{card}}} (G))} \cdot {\operatorname {rc}} (A)$
. The inclusion of
$A^{\alpha }$
in A induces an isomorphism from the purely positive part of the Cuntz semigroup
${\operatorname {Cu}} (A^{\alpha })$
to the fixed points of the purely positive part of
${\operatorname {Cu}} (A)$
, and the purely positive part of
${\operatorname {Cu}} ( C^* (G, A, \alpha ) )$
is isomorphic to this semigroup. We construct an example in which
$G \,{=}\, {\mathbb {Z}} / 2 {\mathbb {Z}}$
, A is a simple unital AH algebra,
$\alpha $
has the Rokhlin property,
${\operatorname {rc}} (A)> 0$
,
${\operatorname {rc}} (A^{\alpha }) = {\operatorname {rc}} (A)$
, and
${\operatorname {rc}} ({C^* (G, A, \alpha)} ) = ({1}/{2}) {\operatorname {rc}} (A)$
.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献