Abstract
Abstract
Let M be a compact smooth manifold without boundary. Based on results by Good and Meddaugh [Invent. Math.220 (2020), 715–736], we prove that a strong distributional chaos is
$C^0$
-generic in the space of continuous self-maps (respectively, homeomorphisms) of M. The results contain answers to questions by Li, Li and Tu [Chaos26 (2016), 093103] and Moothathu [Topology Appl.158 (2011), 2232–2239] in the zero-dimensional case. A related counter-example on the chain components under shadowing is also given.
Funder
Japan Society for the Promotion of Science
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献