Abstract
Building on work of Prandtl and Alexander, we study logarithmic vortex spiral solutions of the two-dimensional incompressible Euler equations. We consider multi-branched spirals that are not symmetric, including mixtures of sheets and continuum vorticity. We find that non-trivial solutions allow only sheets, that there is a large variety of such solutions, but that only the Alexander spirals with three or more symmetric branches appear to yield convergent Biot–Savart integral.
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献