Transition to blow-up in a reaction–diffusion model with localized spike solutions

Author:

ROTTSCHÄFER V.,TZOU J. C.,WARD M.J.

Abstract

For certain singularly perturbed two-component reaction–diffusion systems, the bifurcation diagram of steady-state spike solutions is characterized by a saddle-node behaviour in terms of some parameter in the system. For some such systems, such as the Gray–Scott model, a spike self-replication behaviour is observed as the parameter varies across the saddle-node point. We demonstrate and analyse a qualitatively new type of transition as a parameter is slowly decreased below the saddle node value, which is characterized by a finite-time blow-up of the spike solution. More specifically, we use a blend of asymptotic analysis, linear stability theory, and full numerical computations to analyse a wide variety of dynamical instabilities, and ultimately finite-time blow-up behaviour, for localized spike solutions that occur as a parameter β is slowly ramped in time below various linear stability and existence thresholds associated with steady-state spike solutions. The transition or route to an ultimate finite-time blow-up can include spike nucleation, spike annihilation, or spike amplitude oscillation, depending on the specific parameter regime. Our detailed analysis of the existence and linear stability of multi-spike patterns, through the analysis of an explicitly solvable non-local eigenvalue problem, provides a theoretical guide for predicting which transition will be realized. Finally, we analyse the blow-up profile for a shadow limit of the reaction–diffusion system. For the resulting non-local scalar parabolic problem, we derive an explicit expression for the blow-up rate near the parameter range where blow-up is predicted. This blow-up rate is confirmed with full numerical simulations of the full PDE. Moreover, we analyse the linear stability of this solution that blows up in finite time.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3