Localised signalling compartments in 2D coupled by a bulk diffusion field: Quorum sensing and synchronous oscillations in the well-mixed limit

Author:

IYANIWURA SARAFA A.,WARD MICHAEL J.ORCID

Abstract

We analyse oscillatory instabilities for a coupled partial-ordinary differential equation (PDE-ODE) system modelling the communication between localised spatially segregated dynamically active signalling compartments that are coupled through a passive extracellular bulk diffusion field in a bounded 2D domain. Each signalling compartment is assumed to secrete a chemical into the extracellular medium (bulk region), and it can also sense the concentration of this chemical in the region around its boundary. This feedback from the bulk region, resulting from the entire collection of cells, in turn modifies the intracellular dynamics within each cell. In the limit where the signalling compartments are circular discs with a small common radius ɛ ≪ 1 and where the bulk diffusivity is asymptotically large, a matched asymptotic analysis is used to reduce the dimensionless PDE–ODE system into a nonlinear ODE system with global coupling. For Sel’kov reaction kinetics, this ODE system for the intracellular dynamics and the spatial average of the bulk diffusion field are then used to investigate oscillatory instabilities in the dynamics of the cells that are triggered due to the global coupling. In particular, numerical bifurcation software on the ODEs is used to study the overall effect of coupling defective cells (cells that behave differently from the remaining cells) to a group of identical cells. Moreover, when the number of cells is large, the Kuramoto order parameter is computed to predict the degree of phase synchronisation of the intracellular dynamics. Quorum sensing behaviour, characterised by the onset of collective behaviour in the intracellular dynamics as the number of cells increases above a threshold, is also studied. Our analysis shows that the cell population density plays a dual role of triggering and then quenching synchronous oscillations in the intracellular dynamics.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pattern forming systems coupling linear bulk diffusion to dynamically active membranes or cells;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2021-11-08

2. Synchrony and Oscillatory Dynamics for a 2-D PDE-ODE Model of Diffusion-Mediated Communication between Small Signaling Compartments;SIAM Journal on Applied Dynamical Systems;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3