Refined stability thresholds for localized spot patterns for the Brusselator model in

Author:

CHANG Y.,TZOU J. C.,WARD M. J.,WEI J. C.

Abstract

In the singular perturbation limit ε → 0, we analyse the linear stability of multi-spot patterns on a bounded 2-D domain, with Neumann boundary conditions, as well as periodic patterns of spots centred at the lattice points of a Bravais lattice in $\mathbb{R}^2$, for the Brusselator reaction–diffusion model $$ \begin{equation*} v_t = \epsilon^2 \Delta v + \epsilon^2 - v + fu v^2 \,, \qquad \tau u_t = D \Delta u + \frac{1}{\epsilon^2}\left(v - u v^2\right) \,, \end{equation*} $$ where the parameters satisfy 0 < f < 1, τ > 0 and D > 0. A previous leading-order linear stability theory characterizing the onset of spot amplitude instabilities for the parameter regime D = ${\mathcal O}$−1), where ν = −1/log ϵ, based on a rigorous analysis of a non-local eigenvalue problem (NLEP), predicts that zero-eigenvalue crossings are degenerate. To unfold this degeneracy, the conventional leading-order-in-ν NLEP linear stability theory for spot amplitude instabilities is extended to one higher order in the logarithmic gauge ν. For a multi-spot pattern on a finite domain under a certain symmetry condition on the spot configuration, or for a periodic pattern of spots centred at the lattice points of a Bravais lattice in $\mathbb{R}^2$, our extended NLEP theory provides explicit and improved analytical predictions for the critical value of the inhibitor diffusivity D at which a competition instability, due to a zero-eigenvalue crossing, will occur. Finally, when D is below the competition stability threshold, a different extension of conventional NLEP theory is used to determine an explicit scaling law, with anomalous dependence on ϵ, for the Hopf bifurcation threshold value of τ that characterizes temporal oscillations in the spot amplitudes.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3