A finite-volume scheme for fractional diffusion on bounded domains

Author:

Bailo Rafael,Carrillo José A.,Fronzoni StefanoORCID,Gómez-Castro David

Abstract

Abstract We propose a new fractional Laplacian for bounded domains, expressed as a conservation law and thus particularly suited to finite-volume schemes. Our approach permits the direct prescription of no-flux boundary conditions. We first show the well-posedness theory for the fractional heat equation. We also develop a numerical scheme, which correctly captures the action of the fractional Laplacian and its anomalous diffusion effect. We benchmark numerical solutions for the Lévy–Fokker–Planck equation against known analytical solutions. We conclude by numerically exploring properties of these equations with respect to their stationary states and long-time asymptotics.

Publisher

Cambridge University Press (CUP)

Reference41 articles.

1. Improved intermediate asymptotics for the heat equation;Bartier;Appl. Math. Lett.,2011

2. The one-dimensional Keller-Segel model with fractional diffusion of cells;Bournaveas;Nonlinearity,2010

3. Numerical Methods for Conservation Laws

4. A pseudospectral method for the one-dimensional fractional laplacian on $\mathbb{R}$;Cayama;Appl. Math. Comput.,2021

5. Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3