Consensus-based optimisation with truncated noise

Author:

Fornasier MassimoORCID,Richtárik PeterORCID,Riedl KonstantinORCID,Sun LukangORCID

Abstract

Abstract Consensus-based optimisation (CBO) is a versatile multi-particle metaheuristic optimisation method suitable for performing non-convex and non-smooth global optimisations in high dimensions. It has proven effective in various applications while at the same time being amenable to a theoretical convergence analysis. In this paper, we explore a variant of CBO, which incorporates truncated noise in order to enhance the well-behavedness of the statistics of the law of the dynamics. By introducing this additional truncation in the noise term of the CBO dynamics, we achieve that, in contrast to the original version, higher moments of the law of the particle system can be effectively bounded. As a result, our proposed variant exhibits enhanced convergence performance, allowing in particular for wider flexibility in choosing the noise parameter of the method as we confirm experimentally. By analysing the time evolution of the Wasserstein- $2$ distance between the empirical measure of the interacting particle system and the global minimiser of the objective function, we rigorously prove convergence in expectation of the proposed CBO variant requiring only minimal assumptions on the objective function and on the initialisation. Numerical evidences demonstrate the benefit of truncating the noise in CBO.

Publisher

Cambridge University Press (CUP)

Reference46 articles.

1. On the Global Convergence of Particle Swarm Optimization Methods

2. Handbook of Evolutionary Computation

3. [34] Huang, H. , Qiu, J. & Riedl, K. (2022) Consensus-based optimization for saddle point problems. arXiv:2212.12334, 2022.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3