Author:
NÜRNBERG ROBERT,TUCKER EDWARD J. W.
Abstract
We consider a fully practical finite element approximation of the Cahn–Hilliard–Stokes system:
$$\begin{align*}
\gamma \tfrac{\partial u}{\partial t} + \beta v \cdot \nabla u -
\nabla \cdot \left(
\nabla w \right) & = 0 \,, \quad
w= -\gamma \Delta u + \gamma ^{-1} \Psi ' (u) - \tfrac12 \alpha c'(\cdot,u)
| \nabla \phi |^2\,, \\
\nabla \cdot (c(\cdot,u) \nabla \phi) & = 0\,,\quad
\begin{cases}
-\Delta v + \nabla p = \varsigma w \nabla u, \\
\nabla \cdot v = 0, \end{cases}
\end{align*}$$
subject to an initial condition u0(.) ∈ [−1, 1] on the conserved order parameter u ∈ [−1, 1], and mixed boundary conditions. Here, γ ∈ $\mathbb{R}_{>0}$ is the interfacial parameter, α ∈ $\mathbb{R}_{\geq0}$ is the field strength parameter, Ψ is the obstacle potential, c(⋅, u) is the diffusion coefficient, and c′(⋅, u) denotes differentiation with respect to the second argument. Furthermore, w is the chemical potential, φ is the electro-static potential, and (v, p) are the velocity and pressure. The system has been proposed to model the manipulation of morphologies in organic solar cells with the help of an applied electric field and kinetics.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献