Formal derivation of a bilayer model coupling shallow water and Reynolds lubrication equations: evolution of a thin pollutant layer over water

Author:

FERNÁNDEZ-NIETO E. D.,NARBONA-REINA G.,ZABSONRÉ J. D.

Abstract

In this paper, a bilayer model is derived to simulate the evolution of a thin film flow over water. This model is derived from the incompressible Navier–Stokes equations together with suitable boundary conditions including friction and capillary effects. The derivation is based on the different properties of the fluids; thus, we perform a multiscale analysis in space and time, and a different asymptotic analysis to derive a system coupling two different models: the Reynolds lubrication equation for the upper layer and the shallow water model for the lower one. We prove that the model verifies a dissipative entropy inequality up to a second-order term. Moreover, we propose a correction of the model – by taking into account the second-order extension for the pressure – that admits an exact dissipative entropy inequality. Two numerical tests are presented. In the first test, we compare the numerical results with the viscous bilayer shallow water model proposed in Narbona-Reina et al. (Comput. Model. Eng. Sci., 2009, Vol. 43, pp. 27–71). In the second test, the objective is to show some of the characteristic situations that can be studied with the proposed model. We simulate a problem of pollutant dispersion near the coast. For this test, the influence of the friction coefficient on the coastal area affected by the pollutant is studied.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Reference34 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3