Steady states and dynamics of a thin-film-type equation with non-conserved mass

Author:

JI HANGJIEORCID,WITELSKI THOMAS P.ORCID

Abstract

We study the steady states and dynamics of a thin-film-type equation with non-conserved mass in one dimension. The evolution equation is a non-linear fourth-order degenerate parabolic partial differential equation (PDE) motivated by a model of volatile viscous fluid films allowing for condensation or evaporation. We show that by changing the sign of the non-conserved flux and breaking from a gradient flow structure, the problem can exhibit novel behaviours including having two distinct classes of co-existing steady-state solutions. Detailed analysis of the bifurcation structure for these steady states and their stability reveals several possibilities for the dynamics. For some parameter regimes, solutions can lead to finite-time rupture singularities. Interestingly, we also show that a finite-amplitude limit cycle can occur as a singular perturbation in the nearly conserved limit.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On modeling tear breakup dynamics with a nematic lipid layer;Journal of Engineering Mathematics;2024-07-29

2. On travelling wave solutions of a model of a liquid film flowing down a fibre;European Journal of Applied Mathematics;2021-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3