Solving polynomial systems using a fast adaptive back propagation-type neural network algorithm

Author:

GOULIANAS K.,MARGARIS A.,REFANIDIS I.,DIAMANTARAS K.

Abstract

This paper proposes a neural network architecture for solving systems of non-linear equations. A back propagation algorithm is applied to solve the problem, using an adaptive learning rate procedure, based on the minimization of the mean squared error function defined by the system, as well as the network activation function, which can be linear or non-linear. The results obtained are compared with some of the standard global optimization techniques that are used for solving non-linear equations systems. The method was tested with some well-known and difficult applications (such as Gauss–Legendre 2-point formula for numerical integration, chemical equilibrium application, kinematic application, neuropsychology application, combustion application and interval arithmetic benchmark) in order to evaluate the performance of the new approach. Empirical results reveal that the proposed method is characterized by fast convergence and is able to deal with high-dimensional equations systems.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixing neural networks, continuation and symbolic computation to solve parametric systems of non linear equations;Neural Networks;2024-08

2. Research on Three-dimensional System of Career Planning Based on BP Neural Network;2023 International Conference on Power, Electrical Engineering, Electronics and Control (PEEEC);2023-09-25

3. An ultrafast neural network-based hardware acceleration for nonlinear systems’ simulators;Computers & Electrical Engineering;2019-10

4. TRUSS STRUCTURE OPTIMIZATION BASED ON IMPROVED WOLF PACK ALGORITHM;Stavební obzor - Civil Engineering Journal;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3