Structure-preserving deep learning

Author:

CELLEDONI E.,EHRHARDT M. J.,ETMANN C.,MCLACHLAN R. I.,OWREN B.,SCHONLIEB C.-B.ORCID,SHERRY F.

Abstract

Over the past few years, deep learning has risen to the foreground as a topic of massive interest, mainly as a result of successes obtained in solving large-scale image processing tasks. There are multiple challenging mathematical problems involved in applying deep learning: most deep learning methods require the solution of hard optimisation problems, and a good understanding of the trade-off between computational effort, amount of data and model complexity is required to successfully design a deep learning approach for a given problem.. A large amount of progress made in deep learning has been based on heuristic explorations, but there is a growing effort to mathematically understand the structure in existing deep learning methods and to systematically design new deep learning methods to preserve certain types of structure in deep learning. In this article, we review a number of these directions: some deep neural networks can be understood as discretisations of dynamical systems, neural networks can be designed to have desirable properties such as invertibility or group equivariance and new algorithmic frameworks based on conformal Hamiltonian systems and Riemannian manifolds to solve the optimisation problems have been proposed. We conclude our review of each of these topics by discussing some open problems that we consider to be interesting directions for future research.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Reference139 articles.

1. [10] Behrmann, J. , Vicol, P. , Wang, K. C. , Grosse, R. & Jacobsen, J. H. (2021) Understanding and mitigating exploding inverses in invertible neural networks. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp. 1792–1800.

2. Splitting methods

3. Total Variation Regularization for Manifold-Valued Data

4. ImageNet: A large-scale hierarchical image database

5. [21] Celledoni, E. & Høiseth, E. H. (2017) Energy-Preserving and Passivity-Consistent Numerical Discretization of Port-Hamiltonian Systems. arXiv preprint arXiv:1706.08621.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forty years: Geometric numerical integration of dynamical systems in China;International Journal of Modeling, Simulation, and Scientific Computing;2024-08-28

2. Designing stable neural networks using convex analysis and ODEs;Physica D: Nonlinear Phenomena;2024-07

3. PottsMGNet: A Mathematical Explanation of Encoder-Decoder Based Neural Networks;SIAM Journal on Imaging Sciences;2024-03-07

4. Discrete gradients in short-range molecular dynamics simulations;Numerical Algorithms;2024-01-06

5. Hierarchical Training of Deep Neural Networks Using Early Exiting;IEEE Transactions on Neural Networks and Learning Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3