Abstract
In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the solution to the Monge–Ampère equation. We show that theWasserstein gradient flow theory provides a very good framework to solve these highly nonlinear systems. At the end, a uniqueness result is presented in dimension one based on convexity arguments.
Publisher
Cambridge University Press (CUP)
Reference28 articles.
1. [25] Santambrogio, F. Variational problems in transport theory with mass concentration, Tesi. Scuola Normale Superiore di Pisa (Nuova Series)], Vol. 4, Edizioni della Normale, Pisa, 2007.
2. Multi-marginal optimal transport: Theory and applications
3. A Wasserstein gradient flow approach to Poisson−Nernst−Planck equations
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Displacement smoothness of entropic optimal transport;ESAIM: Control, Optimisation and Calculus of Variations;2024