Dynamic and stochastic propagation of the Brenier optimal mass transport

Author:

BARTON ALISTAIR,GHOUSSOUB NASSIFORCID

Abstract

Similar to how Hopf–Lax–Oleinik-type formula yield variational solutions for Hamilton–Jacobi equations on Euclidean space, optimal mass transportations can sometimes provide variational formulations for solutions of certain mean-field games. We investigate here the particular case of transports that maximize and minimize the following ‘ballistic’ cost functional on phase space TM, which propagates Brenier’s transport along a Lagrangian L, $$b_T(v, x):=\inf\left\{\langle v, \gamma (0)\rangle +\int_0^TL(t, \gamma (t), {\dot \gamma}(t))\, dt; \gamma \in C^1([0, T], M); \gamma(T)=x\right\}\!,$$ where $M = \mathbb{R}^d$, and T >0. We also consider the stochastic counterpart: \begin{align*} \underline{B}_T^s(\mu,\nu):=\inf\left\{\mathbb{E}\left[\langle V,X_0\rangle +\int_0^T L(t, X,\beta(t,X))\,dt\right]\!; X\in \mathcal{A}, V\sim\mu,X_T\sim \nu\right\}\!, \end{align*} where $\mathcal{A}$ is the set of stochastic processes satisfying dX = βX (t, X) dt + dWt, for some drift βX (t, X), and where Wt is σ(Xs: 0 ≤ st)-Brownian motion. Both cases lead to Lax–Oleinik-type formulas on Wasserstein space that relate optimal ballistic transports to those associated with dynamic fixed-end transports studied by Bernard–Buffoni and Fathi–Figalli in the deterministic case, and by Mikami–Thieullen in the stochastic setting. While inf-convolution easily covers cost minimizing transports, this is not the case for total cost maximizing transports, which actually are sup-inf problems. However, in the case where the Lagrangian L is jointly convex on phase space, Bolza-type dualities – well known in the deterministic case but novel in the stochastic case – transform sup-inf problems to sup–sup settings. We also write Eulerian formulations and point to links with the theory of mean-field games.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Reference26 articles.

1. [24] Schachter, B. (2017) An Eulerian Approach to Optimal Transport with Applications to the Otto Calculus, Thesis, U. of Toronto.

2. Convexity in Hamilton--Jacobi Theory I: Dynamics and Duality

3. Existence and duality theorems for convex problems of Bolza

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3