Author:
TAYEBI MOHAMMAD A.,GLÄSSER UWE,ESTER MARTIN,BRANTINGHAM PATRICIA L.
Abstract
Crime reduction and prevention strategies are vital for policymakers and law enforcement to face inevitable increases in urban crime rates as a side effect of the projected growth of urban population by the year 2030. Studies conclude that crime does not occur uniformly across urban landscapes but concentrates in certain areas. This phenomenon has drawn attention to spatial crime analysis, primarily focusing on crime hotspots, areas with disproportionally higher crime density. In this paper, we present CrimeTracer1, a personalized random walk-based approach to spatial crime analysis and crime location prediction outside of hotspots. We propose a probabilistic model of spatial behaviour of known offenders within their activity spaces. Crime Pattern Theory concludes that offenders, rather than venture into unknown territory, frequently select targets in or near places they are most familiar with as part of their activity space. Our experiments on a large real-world crime dataset show that CrimeTracer outperforms all other methods used for location recommendation we evaluate here.
Publisher
Cambridge University Press (CUP)
Reference55 articles.
1. Ye M. , Yin P. & Lee W. (2010) Location recommendation for location-based social networks. In: Proceedings of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL GIS'10), San Jose, California, USA, pp. 458–461.
2. Yan L. , Dodier R. H. , Mozer M. & Wolniewicz R. H. (2003) Optimizing classifier performance via an approximation to the wilcoxon-mann-whitney statistic. In: Proceedings of the 20th International Conference on Machine Learning (ICML'03), Washington, DC, USA, pp. 848–855.
3. The Criminology of Place
4. Fast Random Walk with Restart and Its Applications
5. Tayebi M. A. & Glässer U. (2012) Investigating organized crime groups: A social network analysis perspective. In: Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM'12), Istanbul, Turkey, pp. 565–572.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献