An analytic study of vibrational energy harvesting using piezoelectric tiles in stairways subjected to human traffic

Author:

EDLUND CONNOR,RAMAKRISHNAN SUBRAMANIANORCID

Abstract

This work investigates analytically, the use of piezoelectric tiles placed on stairways for vibrational energy harvesting – harnessing electrical power from natural vibrational phenomena – from pedestrian footfalls. While energy harvesting from pedestrian traffic along flat pathways has been studied in the linear regime and realised in practical applications, the greater amounts of energy naturally expended in traversing stairways suggest better prospects for harvesting. Considering the characteristics of two types of commercially available piezoelectric tiles – Navy Type III and Navy Type V – analytical models for the coupled electromechanical system are formulated. The harvesting potential of the tiles is then studied under conditions of both deterministic and carefully developed random excitation profiles for three distinct cases: linear, monostable nonlinear and an array of monostable nonlinear tiles on adjacent steps with linear coupling between them. The results indicate enhanced power output when the tiles are: (1) placed on stairways, (2) uncoupled and (3) subjected to excitation profiles with stochastic frequency. In addition, the Navy Type V tiles are seen to outperform the Navy Type III tiles. Finally, the strongly nonlinear regime outperforms the linear one suggesting that the realisation of commercially available piezoelectric tiles with appropriately tailored nonlinear characteristics will likely have a significant impact on energy harvesting from pedestrian traffic.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Reference41 articles.

1. Kinetic energy harvesting with bistable oscillators

2. [38] Steiner and Martins Energy harvesting plate 45 × 45 × 5 mm 400 khz. http://www.steminc.com/PZT/en/energy-harvesting-plate-45x45x5mm-740-khz.

3. Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator

4. Use of piezoelectric energy harvesting devices for charging batteries;Sodano;Smart Structures and Materials 2003: Smart Sensor Technology and Measurement Systems,2003

5. Generation and Storage of Electricity from Power Harvesting Devices

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3