Paleoseismological Investigations at the Rurrand Fault, Lower Rhine Embayment

Author:

Lehmann K.,Klostermann J.,Pelzing R.

Abstract

AbstractFrom 1998 to 2000, we have studied the evidence for large paleoearthquakes at the Rurrand Fault. This fault represents the eastern border of the Roer Valley Graben, which is the tectonically most active region in the Lower Rhine Embayment. The purpose of our paleoseismological studies is to enlarge the seismicity data base for this region beyond instrumental records and historical reports using indications of surface-faulting events from stratigraphie conditions at active faults. Larger time spans considered in the earthquake catalogue will enable a more reliable statistical analysis which is required for seismic hazard assessment. Based on analyses of geological data and géomorphologie investigations, detailed geophysical surveying was carried out along the southern Rurrand Fault segment for the selection of a site appropriate to paleoseismological studies. Mapping of physical parameter contrasts with seismic reflection, VES, ERT, and GPR measurements along fault-crossing profiles inferred position and near-surface structure of the fault. At the site promising the best conditions, a trench was excavated across the fault near the city of Jiilich, Germany. Within a depth of about 4 m, the Rurrand Fault was exposed in an about 50 m-wide system of faults and fault zones, affecting the stratigraphie sequence with various displacement characteristics and amounts of throw. According to heavy mineral analyses, the deposition time of most the exposed sediment strata was assigned to Pliocene and Lower Pleistocene time. These geological units are covered by loess layers deposited through so-lifluction processes during the Weichselian glacial, i.e. some tens of ka B.P., or – with lower probability – during the Saalian glacial. Several faults which had also affected the loess reflect younger fault activity. However, clear paleoseismic features were not observed in the trench, thus an unambiguous proof of the occurrence of coseismic fault displacements could not be furnished. Recently, differential subsidence due to drainage takes place in the surroundings of the nearby opencast mining. An amount of some 0.35 m, concentrated in a very narrow lateral zone, has been observed during the last 40 a at about 1 km distance from the trench position. To date, the subsidence could not be clearly located in the trench exposure. Results from geodetic levelling campaigns will help to determine the offset residuals and to gain better insight into the ruling displacement processes at the Rurrand Fault.

Publisher

Cambridge University Press (CUP)

Subject

Geology

Reference48 articles.

1. Landesvermessungsamt Nordrhein-Westfalen (1972): Deutsche Grundkarte 1:5000. Sections Stetternich, Neulich, Daubenrath, Hambach. (Bonn).

2. Davis J.L. & Annan A.P. , 1989. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting 37: 531–551.

3. Geomorphological aspects of site selection at the Rurrand Fault for paleoseismological investigations;Hinzen;Netherlands Journal of Geosciences / Geologie en Mijnbouw, 80,2001

4. Forschungszentrum Jülich GmbH, 1999. Gutachten über die Höhenbeobachtungen im Bereich des Forschungszentrums Jülich. (Jülich): unpublished.

5. Active faulting and paleoseismology along the Bree fault, lower Rhine graben, Belgium

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3