Author:
Baumgartner Michael,Ambühl Mathias
Abstract
AbstractCoincidence Analysis (CNA) is a configurational comparative method of causal data analysis that is related to Qualitative Comparative Analysis (QCA) but, contrary to the latter, is custom-built for analyzing causal structures with multiple outcomes. So far, however, CNA has only been capable of processing dichotomous variables, which greatly limited its scope of applicability. This paper generalizes CNA for multi-value variables as well as continuous variables whose values are interpreted as membership scores in fuzzy sets. This generalization comes with a major adaptation of CNA’s algorithmic protocol, which, in an extended series of benchmark tests, is shown to give CNA an edge over QCA not only with respect to multi-outcome structures but also with respect to the analysis of non-ideal data stemming from single-outcome structures. The inferential power of multi-value and fuzzy-set CNA is made available to end users in the newest version of the R package cna.
Publisher
Cambridge University Press (CUP)
Subject
Political Science and International Relations,Sociology and Political Science
Reference22 articles.
1. Multi-Value QCA (mvQCA)
2. Thiem, A (2018) ‘QCApro: Advanced Functionality for Performing and Evaluating Qualitative Comparative Analysis [Computer Program]. R Package Version 1.1-2.’ Available at http://www.alrik-thiem.net/software/.
3. Often Trusted but Never (Properly) Tested: Evaluating Qualitative Comparative Analysis
4. Baumgartner, M Falk, C (2018) ‘Boolean Difference-Making: A Modern Regularity Theory of Causation’. PhilSci Archive. Available at http://philsci-archive.pitt.edu/id/eprint/14876 accessed 26 September 2018.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献