Human favoritism, not AI aversion: People’s perceptions (and bias) toward generative AI, human experts, and human–GAI collaboration in persuasive content generation

Author:

Zhang YunhaoORCID,Gosline Renée

Abstract

Abstract With the wide availability of large language models and generative AI, there are four primary paradigms for human–AI collaboration: human-only, AI-only (ChatGPT-4), augmented human (where a human makes the final decision with AI output as a reference), or augmented AI (where the AI makes the final decision with human output as a reference). In partnership with one of the world’s leading consulting firms, we enlisted professional content creators and ChatGPT-4 to create advertising content for products and persuasive content for campaigns following the aforementioned paradigms. First, we find that, contrary to the expectations of some of the existing algorithm aversion literature on conventional predictive AI, the content generated by generative AI and augmented AI is perceived as of higher quality than that produced by human experts and augmented human experts. Second, revealing the source of content production reduces—but does not reverse—the perceived quality gap between human- and AI-generated content. This bias in evaluation is predominantly driven by human favoritism rather than AI aversion: Knowing that the same content is created by a human expert increases its (reported) perceived quality, but knowing that AI is involved in the creation process does not affect its perceived quality. Further analysis suggests this bias is not due to a ‘quality prime’ as knowing the content they are about to evaluate comes from competent creators (e.g., industry professionals and state-of-the-art AI) without knowing exactly that the creator of each piece of content does not increase participants’ perceived quality.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Applied Psychology,General Decision Sciences

Reference22 articles.

1. Artificial Intelligence: The Ambiguous Labor Market Impact of Automating Prediction

2. Task-Dependent Algorithm Aversion

3. Botha, J. , & Pieterse, H. (2020, March). Fake news and deepfakes: A dangerous threat for 21st century information security. In ICCWS 2020 15th International Conference on Cyber Warfare and Security. Academic Conferences and Publishing Limited (p. 57). https://researchspace.csir.co.za/dspace/handle/10204/11946.

4. Preference for human, not algorithm aversion

5. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3