Long-term storage of mouse embryos at —196 °C: the effect of background radiation

Author:

Whittingham D. G.,Lyon Mary F.,Glenister P. H.

Abstract

SUMMARYIn order to test the feasibility of preservation, of genetic stocks of mice by storage in liquid nitrogen, mouse embryos at the 8-cell stage, were frozen and stored in liquid nitrogen at – 196 °C under increased radiation exposures of 1·8×, 9× and 84× background levels for periods of 6–8 months, 10–12 and 27–29 months, the 1·8 × level being regarded as a control. Their survival rates to the blastocyst stage, and after transfer to recipient females, to foetal or liveborn stages were then compared with those of unfrozen or short term frozen control embryos. The freezing processper secaused a marked loss of viability, in comparison with the unfrozen controls, but at the 1·8× radiation level there was then no further loss in viability even at the longest storage time (27–29 months). Similarly, at the 9× radiation level there was no loss of viability during storage up to 29 months, but at the 84× level the proportions of implanted embryos and live foetuses were slightly reduced. It was not clear if this was a true effect of radiation, since it was not related to time of storage. Considering all groups, about 20–30% of the embryos originally frozen were recovered as foetuses or liveborn young. It is concluded that the preservation of genetic stocks by storage in liquid nitrogen is a feasible proposition.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mary Frances Lyon. 15 May 1925 — 25 December 2014;Biographical Memoirs of Fellows of the Royal Society;2024-04-24

2. Considerations in Immature Oocyte Cryopreservation;Cryopreservation in Assisted Reproduction;2024

3. Assessment of Frozen Semen Quality and Conception Rate in Cow;European Journal of Medical and Health Sciences;2023-12-21

4. Biobanks, offspring fitness and the influence of developmental plasticity in conservation biology;Animal Reproduction;2023

5. X-inactivation, epigenetics, and imprinting, including of the T/t complex;Twentieth Century Mouse Genetics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3