Genetic analysis of larval feeding behaviour inDrosophila melanogaster: II. Growth relations and competition between selected lines

Author:

Burnet Barrie,Sewell David,Bos Marten

Abstract

SUMMARYGrowth relations of lines selected for fast or slow larval feeding rate have been compared with those in the genetically heterogeneous control base population from which they were derived. Larvae of the slow strain have reduced growth rate and reach their critical weight for pupation later than unselected larvae. Larvae of the fast strain attain their critical weight at the same time as the unselected control larvae, suggesting that growth rate in the precritical period of development is already maximized in the base population and cannot be improved by increasing food intake. This constraint does not apply to the fixed period of post-critical growth however, since fast feeding larvae give rise to larger adult flies than the controls.Larval feeding rate is affected by genes located on all three major chromosomes. The small fourth chromosome has negligible effect. Selection for slow feeding rate has led to an increase in the frequency of recessive genes affecting the character. High scores of larvae selected for fast feeding rate depend upon interactions between non-homologous selected chromosomes which individually have little effect. Larval feeding rate in the control unselected population appears to be buffered, firstly by epistatic interactions against the effects of chromosomes tending to promote ‘supra-optimal’ feeding rate and, secondly, by dominance against chromosomes promoting a lowering of feeding rate.Under conditions of scramble type competition between the selected lines for limited resources, fast feeding larvae have a higher survival rate, and complete their period of larval development earlier to give larger adult flies than their slow feeding competitors. The contribution of larval feeding rate to competitive ability at different levels is discussed, and it is suggested that the effects of change in this behavioural character may be far reaching.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3