Author:
Feldman Marcus W.,Christiansen Freddy Bugge
Abstract
SUMMARYThis paper is devoted to the study of the effects of population subdivision on the evolution of two linked loci. Two simple deterministic models of population subdivision without selection are investigated. One is a finite linear ‘stepping stone’ model and the other is a finite linear stepping stone chain of populations stretching between two large populations of constant genetic constitution. At equilibrium in the first model the gene frequencies in each population are equal and there is linkage equilibrium in each population. The rate of decay to zero of the linkage disequilibrium functions is the larger of (1 –c) and, where λ1is the rate of convergence of the gene frequencies to equilibrium and c is the recombination frequency. In the second model at equilibrium there will be a linear cline in gene frequencies connecting the two large constant populations. This cline will be accompanied by a ‘cline’ of linkage disequilibria. The rate of convergence to this equilibrium cline is independent of the recombination frequency, and, in fact, the gene frequencies and the linkage disequilibria converge to equilibrium at the same rate.
Subject
Genetics,General Medicine
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献