Marker-assisted introgression of the Compact mutant myostatin allele MstnCmpt-dl1Abc into a mouse line with extreme growth effects on body composition and muscularity

Author:

BÜNGER LUTZ,OTT GERHARD,VARGA LÁSZLÓ,SCHLOTE WERNER,REHFELDT CHARLOTTE,RENNE ULLA,WILLIAMS JOHN L.,HILL WILLIAM G.

Abstract

Myostatin is a negative regulator of muscle growth and mutations in its gene lead to muscular hypertrophy and reduced fat. In cattle, this is seen in ‘double muscled’ breeds. We have used marker-assisted introgression to introduce a murine myostatin mutation, MstnCmpt-dl1Abc [Compact (C)], into an inbred line of mice (DUHi) that had been selected on body weight and had exceptional growth. Compared with homozygous wild-type mice, homozygous (C/C) mice of this line were ~4–5% lighter, had ~7–8% shorter tails, substantially increased muscle weights (e.g. quadriceps muscle in males was 59% heavier) and an increased ‘dressing percentage’ (~49% vs 39%), an indicator of overall muscularity. The weights of several organs (e.g. liver, kidney, heart and digestive tract) were significantly reduced, by 12–20%. Myostatin deficiency also resulted in drastic reductions of total body fat and of various fat depots, total body fat proportion falling from ~17·5% in wild-type animals of both sexes to 9·5% and 11·6% in homozygous (C/C) females and males, respectively. Males with a deficiency in myostatin had higher gains in muscle traits than females. Additionally, there was a strong distortion of the segregation ratio on the DUHi background. Of 838 genotyped pups from inter se matings 29%, 63% and 8% were homozygous wild type (+/+), heterozygous (C/+) and homozygous (C/C), respectively, showing that MstnCmpt-dl1Abc has lower fitness on this background. This line, when congenic, will be a useful resource in gene expression studies and for finding modifying genes.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3