Effect of genetic background on acoustic startle response in fragile X knockout mice

Author:

ERRIJGERS VANESSA,FRANSEN ERIK,D'HOOGE RUDI,DE DEYN PETER P.,FRANK KOOY R.

Abstract

SummaryTo study the effect of genetic background on the Fmr1 knockout mutation in mice, we compared the acoustic startle response (ASR) of male fragile X knockout mice bred in three different genetic backgrounds, including C57BL/6J (C57BL/6J×129P2/OlaHsd) F1 and F2 intercross. ASR is used as a behavioural tool to assess the neuronal basis of behavioural plasticity. For each background studied, fragile X knockouts clearly differed in ASR from their control littermates. C57BL/6J knockouts showed an increase in ASR in response to the lowest stimulus of 90 dB and a decrease in ASR in response to the highest stimulus of 110 dB when compared with control mice, whereas knockouts of the F1 generation showed significantly lower ASRs for all the three stimulus intensities used when compared with control littermates. These data demonstrate that the expression of the fragile X phenotype in ASR of fragile X knockout mice may be influenced by the presence of 129 genes in the genetic background and that modifier genes may influence the fragile X phenotype. Surprisingly, and in contrast with knockouts of the F1 generation that showed a decreased ASR, knockouts of the F2 generation showed a significantly increased ASR compared with their control littermates. This is especially remarkable as both F1 and F2 mice consist of 50% of the genetic material from each of the parental strains C57BL/6J and 129P2/OlaHsd strain. Thus, the different distribution of the genetic background seems to be responsible for the difference in ASR between F1 and F2. This opposite ASR in the F1 and F2 generations is unique in behavioural studies and has, to our knowledge, not been previously reported.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

Reference12 articles.

1. Fmr1 knockout mice: a model to study fragile X mental retardation;Bakker;Cell,1994

2. Of mice and the fragile X syndrome

3. The Pathophysiology of Fragile X Syndrome

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3