Phosphatase regulation inAspergillus nidulans: responses to nutritional starvation

Author:

Caddick Mark X.,Brownlee Alan G.,Arst Herbert N.

Abstract

SUMMARYThe regulation of the syntheses of a number of phosphatases in the fungusAspergillus nidulanshas been examined. Levels of the intracellular alkaline phosphatase P11 are increased by starvation for carbon, nitrogen, phosphorus or sulphur. There is, however, no evidence that any of the wide domain regulatory genes which mediate sufficiency-triggered repression for each of these elements involved. A possible interpretation is that all four forms of starvation result in accumulation of an inducing metabolite. ThepalcA gene has been identified as a wide domain, probably positive-acting regulatory gene mediating phosphate repression. ThepalcA product controls the syntheses of alkaline phosphatase PI, acid phosphatases PIII and PV, a phosphodiesterase lacking phosphomonoesterase activity and probably also a phosphate permease. Mutations resulting in derepression of phosphate-repressible activities at acid but not alkaline growth pH define a gene designatedpacJ.pacJ mutations also confer arsenate resistance at low but not high pH. It is likely that phosphate derepression and arsenate resistance result from reduced uptake of H2PO4. Finally, phosphatase regulation might be less complex than previously thought. Mutations designatedrand mapping at several loci apparently have no effect on phosphatase. They enhance phosphatase colony staining but this occurs even if the phosphatase substrates are omitted from the staining mixtures.rmutations appear to promote reactions converting the diazonium salts used for phosphatase staining to coloured precipitates.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

Reference36 articles.

1. Supplementary list of located or partially located mutants in A. nidulans;Dorn;Aspergillus Newsletter,1965

2. Suppressible alleles in a wide domain regulatory gene in Aspergillus nidulans

3. A novel phosphate-repressible phosphodiesterase in Aspergillus nidulans;Brownlee;Heredity,1983

4. Nitrogen Catabolite Repression in Yeasts and Filamentous Fungi

5. Mutations to constitutivity and derepression are separate and separable in a regulatory gene of Aspergillus nidulans

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3