On flexible finite polygenic models for multiple-trait evaluation

Author:

BINK MARCO C. A. M.

Abstract

Finite polygenic models (FPM) might be an alternative to the infinitesimal model (TIM) for the genetic evaluation of pedigreed multiple-generation populations for multiple quantitative traits. I present a general flexible Bayesian method that includes the number of genes in the FPM as an additional random variable. Markov-chain Monte Carlo techniques such as Gibbs sampling and the reversible jump sampler are used for implementation. Sampling of genotypes of all genes in the FPM is done via the use of segregation indicators. A broad range of FPM models, some combined with TIM, are empirically tested for the estimation of variance components and the number of genes in the FPM. Four simulation scenarios were studied, including genetic models with 5 or 50 additive independent diallelic genes affecting the traits, and random selection or selection on one of the traits was performed. The results in this study were based on ten replicates per simulation scenario. In the case of random selection, uniform priors on additive gene effects led to posterior mean estimates of genetic variance that were positively correlated with the number of genes fitted in the FPM. In the case of trait selection, assuming normal priors on gene effects also led to genetic variance estimates for the selected trait that were negatively correlated with the number of genes in the FPM. This negative correlation was not observed for the unselected trait. Treating the number of genes in the FPM as random revealed a positive correlation between prior and posterior mean estimates of this number, but the prior hardly affected the posterior estimates of genetic variance. Posterior inferences about the number of genes should be considered to be indicative where trait selection seems to improve the power of distinguishing between TIM and FPM. Based on the results of this study, I suggest not replacing TIM by the FPM, but combining TIM and FPM with the number of genes treated as random, to facilitate a highly flexible and thereby robust method for variance component estimation in pedigreed populations. Further study is required to explore the full potential of these models under different genetic model assumptions.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3