Induced mitotic crossing-over inUstilago maydis

Author:

Holliday Robin

Abstract

1. Two different methods of selection were used to obtain stable prototrophic solopathogenic strains ofUstilago maydisfrom haploids with different biochemical requirements. The strains were shown to be heterozygous diploids.2. Two diploids which were examined in detail had four markers in common, but they were in different coupling and repulsion phases. Rare spontaneous segregation was detected in one of the diploids, but a high frequency of segregation was obtained in both after treatment with ultra-violet light. The proportion of segregants amongst the survivors increased with the dose. These auxotrophic segregants were detected by means of the replica plating technique.3. The types of segregant which were obtained from both diploids were consistent with the view that they arose as a result of mitotic crossing-over. After low doses of radiation the reciprocal products of crossing-over were often detected. There was no evidence from the phenotypes of the segregants that haploidization was occurring. The diploidy of a sample of the segregants was confirmed by mating-type tests, and by the fact that they showed further segregation after another dose of radiation.4. A slow-growing unstable segregant recovered after a high dose of radiation proved to be a monosomic strain which consistently reverted to a stable diploid homozygous for one chromosome. It was possible to use this auxotrophic diploid together with a haploid with different biochemical requirements, to synthesize a prototrophic triploid strain. The triploid was much less stable than the diploid strains.5. By means of pathogenicity tests with certain segregants it was possible to distinguish the function of the two loci which control the mating system. Thealocus is responsible for the fusion of haploid sporidia and has no effect on the pathogenicity of the heterokaryon which is under the control of theblocus.6. The effects of ultra-violet light on mitotic crossing-over do not seem to be easily compatible with a copy choice or similar mechanism of recombination.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3