Genome-wide association mapping including phenotypes from relatives without genotypes

Author:

WANG H.,MISZTAL I.,AGUILAR I.,LEGARRA A.,MUIR W. M.

Abstract

SummaryA common problem for genome-wide association analysis (GWAS) is lack of power for detection of quantitative trait loci (QTLs) and precision for fine mapping. Here, we present a statistical method, termed single-step GBLUP (ssGBLUP), which increases both power and precision without increasing genotyping costs by taking advantage of phenotypes from other related and unrelated subjects. The procedure achieves these goals by blending traditional pedigree relationships with those derived from genetic markers, and by conversion of estimated breeding values (EBVs) to marker effects and weights. Additionally, the application of mixed model approaches allow for both simple and complex analyses that involve multiple traits and confounding factors, such as environmental, epigenetic or maternal environmental effects. Efficiency of the method was examined using simulations with 15 800 subjects, of which 1500 were genotyped. Thirty QTLs were simulated across genome and assumed heritability was 0·5. Comparisons included ssGBLUP applied directly to phenotypes, BayesB and classical GWAS (CGWAS) with deregressed proofs. An average accuracy of prediction 0·89 was obtained by ssGBLUP after one iteration, which was 0·01 higher than by BayesB. Power and precision for GWAS applications were evaluated by the correlation between true QTL effects and the sum ofmadjacent single nucleotide polymorphism (SNP) effects. The highest correlations were 0·82 and 0·74 for ssGBLUP and CGWAS withm=8, and 0·83 for BayesB withm=16. Standard deviations of the correlations across replicates were several times higher in BayesB than in ssGBLUP. The ssGBLUP method with marker weights is faster, more accurate and easier to implement for GWAS applications without computing pseudo-data.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3