The ICEL Healthcare-Associated Infection Probability Equation

Author:

Moore Mark

Abstract

Backround: In American hospitals alone, the CDC estimates that hospital acquired infections (HAIs) account for an estimated 1.7 million infections and 99,000 associated deaths each year.1 Although the United states and most industrialized nations have made strides in lowering the overall HAI rate by taking critical steps to reduce HAIs, an overall formula that combines a global risk assessment per patient for HAI acquisition has yet to be established. To address this issue, we developed the ICEL equation. This equation uses a probabilistic argument to estimate the likelihood of HAI acquisition and to promote infection control dialogue among healthcare practitioners from diverse healthcare disciplines. Methods: We defined HAI risk using the ICEL acronym as follows: HAI risk = (I + C + E + L), where I is invasive devices present; C is patient-specific characteristics; E is the average number of pathogenic organisms in the patient environment; and L is the length of stay. A simple scale of 1–10 points is subjectively assigned for each of the following categories:I = (number of invasive devices / surgeries / % body surface areas open)C = Patient specific characteristics (immune system integrity / immunomodulators / radiation exposure / chemotherapy, etc)E = Environmental conditions / cleaning (average number of pathogenic bacteria in room, 100% hand hygiene compliance, patient / staff colonization, etc)L = Length of stay days risk, where 0–3 days is low risk, 4–7 is moderate risk, and 8–10+ is high riskSumming the points for each of the 4 categories, the greatest possible total is 40. A total score of 0–10 indicates low risk of HAI; 11–20 indicates low-to-medium risk of HAI; 20–30 indicates a high risk of HAI; and 30–40 indicates a very high risk of HAI. Results:This equation was designed to stimulate thought and encourage multidisciplinary cooperation among providers, nursing, environmental services, and facilities departments rather than provide an exact number for HAI risk. All of these categories are key players in the determining patient risk of acquiring an HAI. If any of the 4 hospital departments mentioned fails in their duties, the patient is at higher risk of HAI. Conclusions: This categorical HAI risk assessment relies on the subjective medical and environmental knowledge of the assessor to assign risk across the continuum of the healthcare environment. Although it is nearly impossible to provide exact numbers regarding total risk in these risk categories, the goal of the scoring system is to encourage clinical dialogue among hospital staff so that they communicate and collaborate within their specialties and with their peers to assure that each category poses as low a risk as possible, thus driving the total risk for HAI lower.1. https://www.cdc.gov/hai/data/portal/progress-report.htmlFunding: NoneDisclosures: None

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Microbiology (medical),Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3