Design, simulation, control of a hybrid pouring robot: enhancing automation level in the foundry industry

Author:

Chengjun Wang,Hao DuanORCID,Long Li

Abstract

AbstractCurrently, workers in sand casting face harsh environments and the operation safety is poor. Existing pouring robots have insufficient stability and load-bearing capacity and cannot perform intelligent pouring according to the demand of pouring process. In this paper, a hybrid pouring robot is proposed to solve these limitations, and a vision-based hardware-in-the-loop (HIL) control technology is designed to achieve the real-time control problems of simulated pouring and pouring process. Firstly, based on the pouring mechanism and the motion demand of ladle, a hybrid pouring robot with a 2UPR-2RPU parallel mechanism as the main body is designed. And the equivalent hybrid kinematic model was established by using Eulerian method and differential motion. Subsequently, a motion control strategy based on HIL simulation technique was designed and presented. The working space of the robot was obtained through simulation experiments to meet the usage requirements. And the stability of the robot was tested through the key motion parameters of the robot joints. Based on the analysis of pouring quality and trajectory, optimal dynamic parameters for the experimental prototype are obtained through water simulation experiments, the pouring liquid height area is 35–40 cm, the average flow rate of pouring liquid is 112 cm3/s, and the ladle tilting speed is 0.0182 rad/s. Experimental results validate the reasonableness of the designed pouring robot structure. Its control system realizes the coordinated movement of each branch chain to complete the pouring tasks with different variable parameters. Consequently, the designed pouring robot will significantly enhance the automation level of the casting industry.

Publisher

Cambridge University Press (CUP)

Reference49 articles.

1. Design of a non-reflow automatic pouring mechanism for a plumbum alloy igot casting line;Pu;China Min. Mag.,2020

2. Machine learning: Supervised algorithms to determine the defect in high-precision foundry operation;Hazela;J. Nanomaterials.,2022

3. [21] Chen, T. , Huang, Y. and Sun, Y. , “Accurate Pouring using Model Predictive Control Enabled by Recurrent Neural Network,” IEEE International Conference on Intelligent Robots and Systems (2019) pp. 7688–7694.

4. Autonomous precision pouring from unknown containers;Kennedy;IEEE Rob. Autom. Lett.,2019

5. Research on dynamics of hybrid pouring robot and attitude stability control of ladle;Long;Meas. Control,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3