A new compensation technique based on analysis of resampling process in FastSLAM

Author:

Kwak Nosan,Kim Gon-Woo,Lee Beom-Hee

Abstract

SUMMARYThe state-of-the-art FastSLAM algorithm has been shown to cause a particle depletion problem while performing simultaneous localization and mapping for mobile robots. As a result, it always produces over-confident estimates of uncertainty as time progresses. This particle depletion problem is mainly due to the resampling process in FastSLAM, which tends to eliminate particles with low weights. Therefore, the number of particles to conduct loop-closure decreases, which makes the performance of FastSLAM degenerate. The resampling process has not been thoroughly analyzed even though it is the main reason for the particle depletion problem. In this paper, standard resampling algorithms (systematic residual and partial resampling), a rank-based resampling adopting genetic algorithms are analyzed using computer simulations. Several performance measures such as the effective sample size, the number of distinct particles, estimation errors, and complexity are used for the thorough analysis of the resampling algorithms. Moreover, a new compensation technique is proposed instead of resampling to resolve the particle depletion problem in FastSLAM. In estimation errors, the compensation technique outperformed other resampling algorithms though its run-time was longer than those of others. The most appropriate time to instigate compensation to reduce the run-time was also analyzed with the diminishing number of particles.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference29 articles.

1. 26. Whitley D. , “The Genitor Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best,” Proceedings of the 3rd International Conference on Genetic Algorithms 1 (1989) pp. 116–121.

2. A survey of convergence results on particle filtering methods for practitioners

3. 23. Baker J. E. , “Adaptive Selection Methods for Genetic Algorithms,” Proceedings of the 1st International Conference on Genetic Algorithms Table of Contents (1985) pp. 101–111.

4. Resampling algorithms for particle filters: A computational complexity perspective;Bolić;Eurasip J. Appl. Signal Process,2004

5. Monte carlo filter using the genetic algorithm operators

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3