Determining maximum load-carrying capacity of robots using adaptive robust neural controller

Author:

Korayem M. H.,Alamdari A.,Haghighi R.,Korayem A. H.

Abstract

SUMMARYIn this paper, the combination of neural network (NN), proportional derivative (PD), and robust controller are used for determining the maximum load-carrying capacity (MLCC) of articulated robots, subject to both actuator and end-effector deflection constraints. The proposed technique is then applied to articulated robots, and MLCC is obtained for a given trajectory. In the practical simulations, it's impossible to determine the parameters of robot model exactly, so the trajectory tracking performance of the proportional integral derivative (PID) and computed torque methods significantly decrease. The PD control of robot has major problem, it cannot guarantee zero steady state error. For this reason, the NN controller with PD and robust controller are used. The multilayer neural network is also used to compensate gravity and friction effects. By using Lyapunov Direct Method it is shown that the stability of closed loop system would be guaranteed, if the weights of multilayer had certain learning rules. Standard back propagation algorithm is used as a learning algorithm to update the connection weights of the NN controller. The simulation results of the proposed adaptive robust neural network (ARNN) controller are compred with sliding mode and feedback linearization methods for flexible joint robot, and compared with open loop controller for 3D industrial robot. The obtained results assured the robustness and improvement in MLCC in the presence of uncertainties in dynamic model of the robot arm and external disturbances. In fact, adaptive robust NN controller suppresses disturbances accurately and achieves very small errors between commanded and actual trajectories.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference19 articles.

1. PD control of robot with velocity estimation and uncertainties compensation;Yu;Int. J. Robot. Autom.,2006

2. Optimal Actuator Sizing for Robotic Manipulators Based on Local Dynamic Criteria

3. Adaptive output feedback tracking control of robot manipulators using position measurements only

4. Neural adaptive control of two-link manipulator with sliding mode;Yu;IEEE Int. Conf. Robot. Autom.,1999

5. Guest editorial: Neural network feedback control with guaranteed stability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3