Modelling and verification of fatigue damage for compliant mechanisms

Author:

Liu Changli,Bi Zhuming,Ran Jilin,Gu Junjie,Wang Xuejun,Zhang Chris

Abstract

SUMMARYThis paper presents a model-based approach for the first time to identify the crack location for the hinge-based planar RRR compliant mechanism, a parallel micro-motion stage driven by piezoelectric (PZT) actuators. However, cracks more likely occur on a flexure hinge because it usually undergoes a periodic deformation in service, which eventually compromises mechanism's performance, positioning accuracy for instance. In this work, the pseudo-rigid-body method is used to develop kinematic and dynamic models of the RRR mechanism both in healthy and damaged conditions, where the crack is considered in terms of the rotational compliance of a flexible hinge. The crack location is determined by measuring PZT elongations, which represents the driving toque deviation because of the crack presence. Numerical simulation is conducted to verify the proposed approach, and the results show good match of the identified crack location with the assumed location. Finally, experiments on the RRR mechanism with a prefabricated crack is performed to further validate the proposed models; the experimental results yield a good consistence.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference27 articles.

1. Toward a resilient manufacturing system;Van;Cirp. Ann-Mauf. Techn.,2011

2. Z. C. Du , Y. Q. Yu and L. Y. Su , “Analysis of Dynamic Stress and Fatigue Property of Flexible Robots,” In: Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics (2006) pp. 1351–1355.

3. Y. K. Yong , T. Lu and D. C. Handley , “Loop Closure Theory in Deriving Linear and Simple Kinematic Model for a 3-DOF Parallel Micromanipulator,” In: Proceedings of SPIE International Symposium on Microelectronic, MEMS, and Nanotechnology (2003) pp. 57–66.

4. On mechanical properties of planar flexure hinges of compliant mechanisms;Dirksen;Int. J. Mech. Sci.,2011

5. Crack identification in a rotor system: a model-based approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3