Neural hybrid control of manipulators, stability analysis

Author:

Saadia N.,Amirat Y.,Pontnau J.,M'Sirdi N.K.

Abstract

The design and implementation of adaptive control for nonlinear unknown systems is extremely difficult. The nonlinear adaptive control for assembly robots performing a peg-in-hole insertion is one such an example. The recently intensively studied neural networks brings a new stage in the development of adaptive control, particularly for unknown nonlinear systems. The aim of this paper is to propose a new approach of hybrid force position control of an assembly robot based on artificial neural networks systems. An appropriate neural network is used to model the plant and is updated online. An artificial neural network controller is then directly evaluated using the updated neuro model. Two control structures are proposed and the stability analysis of the closed-loop system is investigated using the Lyapunov method. Experimental results demonstrate that the identification and control schemes suggested in this paper are efficient in practice.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Examining Functional Spatial Perception in 10-Year-Olds and Adults;Perceptual and Motor Skills;2018-07-25

2. Safety-Critical Support Vector Regressor Controller for Nonlinear Systems;Neural Processing Letters;2017-11-10

3. Generalized self-tuning regulator based on online support vector regression;Neural Computing and Applications;2016-06-08

4. An adaptive support vector regressor controller for nonlinear systems;Soft Computing;2015-04-14

5. Robot Perception Based on Different Computational Intelligence Techniques;Emerging Technologies for Information Systems, Computing, and Management;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3