A novel 10 kV high-voltage cable stripping robot’s mechanism design and analysis

Author:

Zhong JunORCID,Wang Zhichao,Hu Shaoguang,Han Zhenfeng

Abstract

AbstractA 10 kV distribution network is critical for ensuring power supply to residents and factories. The number of power maintenance operations is rapidly increasing, and aerial cable stripping is a significant branch of these routine maintenances. High-voltage cable stripping, on the other hand, is mostly done manually, which is inefficient and poses serious security risks. As a result, this paper proposes an automatic wire stripping robot for use in a 10 kV power grid. The mechanical structure of the stripping robot is designed for installation on the insulating rod based on the working environment of 10 kV overhead cables. The robot was subjected to electromagnetic field simulation, modal analysis, and rigid-flexible coupling analysis. Finally, the robot prototype is built, and the PID controller is designed. Stripping tests are performed on a cable with a cross-sectional area of 95, 120, 150, 240, and 300 mm2, and the results are satisfactory.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Reference30 articles.

1. A dynamic model to predict modulation sidebands of a planetary gear set having manufacturing errors

2. AApe-D: A novel power transmission line maintenance robot for broken strand repair

3. Structure singular value theory based robust motion control of live maintenance robot with reconfigurable terminal function for high voltage transmission line[J];Jiang;Int. J. Adv. Rob. Syst.,2018

4. Autonomous inspection robot for power transmission lines maintenance while operating on the overhead ground wires;Li;Int. J. Adv. Robot. Syst.,2011

5. A Multiple Sensors Platform Method for Power Line Inspection Based on a Large Unmanned Helicopter

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3